Estimating and predicting FF CO₂ fluxes using top-down NOx emissions and CO₂ observations and inventories

Kazuyuki Miyazaki, Kevin Bowman

Jet Propulsion Laboratory, California Institute of Technology

- OH coupling (CH₄)
- Combustion process (NOx, CO, CO₂)
- Joint emission optimization

Reuter et al., 2019

Monitoring localized CO₂ emissions: co-located regional CO₂ (OCO-2) and NO₂ (S5P) enhancements

- The signatures of regional FF CO₂ emissions in CO₂ observations are typically weak relative to regional background concentration, except near hot spots sources.
- The use of proxy species (NO₂, CO) for CO₂ flux estimates is justified because their satellite measurements are known to contain a strong signal associated with human activities
- CO₂-AQ emission ratios can be used to understand emission processes (combustion type, new technology and regulation) and improve bottom-up inventories

Hybrid FF CO₂ emissions using AQ measurements

Konovalov et al., 2016, ACP

- 1. Top-down NOx and CO emission estimates using satellite measurements
- 2. Apply emissions factors (NOx/CO₂ ratios from bottom-up inventories) to relate FF CO₂ emissions to the NOx emissions

strongly rely on top-down NOx emission estimates and emission ratios in bottom-up inventories

Characterizing regional-scale combustion using CO, NO₂, and CO₂ obs

- Satellite observations of the CO-NO₂-CO₂ ratio patterns are able to distinguish between combustion types. There is no distinction between the various developed and developing regions in bottom-up inventories.
- Multi-species observations can provide constraints on emission inventories, and be useful in monitoring trends and understanding combustion.

Silva and Arellano, 2017

- 1. Temporal evolutions of top-down NOx emissions and CO₂ emission inventories
- 2. Understand long-term changes in emission ratios and emission processes
- 3. Predict CO₂ fluxes using emission ratio trajectories and up-to-date NOx emissions

→ improve NOx, CO, SO₂ emission estimates with reduced model errors unrelated to emissions

TCR-2 NOx trend

ODIAC CO₂ trend

How will changes in air quality mitigation impact carbon emissions?

- ODIAC CO2
- ODIAC CO2 (predicted from a 2011-2016 NOx-CO2 linear regression)
- TCR NOx

- ODIAC CO2
- ODIAC CO2 (predicted from a 2011-2016 NOx-CO2 linear regression)
- TCR NOx

→ Implications for changes in emission factors and activity Implementation of new technology and regulation? **ODIAC**

Predicted

2017

Strong year-to-year variations in emission factors, activity, and emission ratios for India, SE Asia, and the Middle east?

→ improvements of emission inventories, understanding of emission processes

By making an emission ratio trajectory (temporally varying) and using up-to-date NOx emission estimates (- a week delay), we could obtain near-real time FF CO₂ fluxes, without waiting for statistical information needed for FF CO₂ inventories!

Multi-species (NOx + CO + SO₂) constraints on FF CO₂ flux

Different aspects of the combustion technology are expected to affect those emissions in different ways: e.g., NOx emissions are strongly dependent on the temperature of combustion (more NOx is released at higher T), CO emissions can be regarded as a measure of the incompleteness of combustion processes. Strong SO₂ emissions from volcanic eruptions.

Listing strong emission points using top-down NOx emissions

Strong FF emission points from top-down estimates

→ Any missing points in the OCO-3 ODIAC target list?

High resolution global data assimilation of TROPOMI NO₂

+

Joint emission estimation

OCO-3 CO₂